Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Am J Med Genet A ; 194(3): e63465, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37916856

RESUMO

Loeys-Dietz syndrome (LDS) is an autosomal connective tissue disorder commonly presenting with hypertelorism, bifid uvula, aortic aneurysms, and arterial tortuosity. The aim of the present study was to investigate differences in tortuosity index (TI) between genotypes of LDS, possible progression over time and its use as an adjunctive prognostic tool alongside aortic dimensions to aid timely surgical planning in pediatric patients. A retrospective observational study of pediatric LDS patients referred to our center (November 2012-February 2021) was conducted. Using magnetic resonance angiography (MRA) with 3D maximum intensity projection volume-rendered angiogram, arterial TI was measured. Twenty three patients had genetically confirmed LDS with at least one head and neck MRA and 19 had no less than one follow-up MRA available. All patients presented arterial tortuosity. Patients with TGFBR2 variants had greater values of TI compared to patients with TGFB2 variants (p = 0.041). For patients who did not undergo surgery (n = 18), z-scores at the level of the sinus of Valsalva showed a significant correlation with vertebral TI (rs = 0.547). There was one death during follow-up. This study demonstrates that patients with LDS and TGFBR2 variants have greater values of TI than patients with TGFB2 variants and that greatest values of TI are associated with increased aortic root z-scores. Furthermore, as TI decreases over time, less frequent neuroimaging follow-up can be considered. Nevertheless, additional studies are needed to better define more accurate risk stratification and long-term surveillance in these patients.


Assuntos
Artérias/anormalidades , Instabilidade Articular , Síndrome de Loeys-Dietz , Dermatopatias Genéticas , Malformações Vasculares , Criança , Humanos , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Síndrome de Loeys-Dietz/diagnóstico , Síndrome de Loeys-Dietz/genética , Síndrome de Loeys-Dietz/complicações , Dermatopatias Genéticas/complicações , Aorta/patologia
2.
Int J Numer Method Biomed Eng ; 40(1): e3778, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37961993

RESUMO

In silico trials are a promising way to increase the efficiency of the development, and the time to market of cardiovascular implantable devices. The development of transcatheter aortic valve implantation (TAVI) devices, could benefit from in silico trials to overcome frequently occurring complications such as paravalvular leakage and conduction problems. To be able to perform in silico TAVI trials virtual cohorts of TAVI patients are required. In a virtual cohort, individual patients are represented by computer models that usually require patient-specific aortic valve geometries. This study aimed to develop a virtual cohort generator that generates anatomically plausible, synthetic aortic valve stenosis geometries for in silico TAVI trials and allows for the selection of specific anatomical features that influence the occurrence of complications. To build the generator, a combination of non-parametrical statistical shape modeling and sampling from a copula distribution was used. The developed virtual cohort generator successfully generated synthetic aortic valve stenosis geometries that are comparable with a real cohort, and therefore, are considered as being anatomically plausible. Furthermore, we were able to select specific anatomical features with a sensitivity of around 90%. The virtual cohort generator has the potential to be used by TAVI manufacturers to test their devices. Future work will involve including calcifications to the synthetic geometries, and applying high-fidelity fluid-structure-interaction models to perform in silico trials.


Assuntos
Estenose da Valva Aórtica , Calcinose , Próteses Valvulares Cardíacas , Substituição da Valva Aórtica Transcateter , Humanos , Estenose da Valva Aórtica/cirurgia , Valva Aórtica/cirurgia , Resultado do Tratamento
3.
Front Med Technol ; 5: 1125524, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138727

RESUMO

In silico medicine describes the application of computational modelling and simulation (CM&S) to the study, diagnosis, treatment or prevention of a disease. Tremendous research advances have been achieved to facilitate the use of CM&S in clinical applications. Nevertheless, the uptake of CM&S in clinical practice is not always timely and accurately reflected in the literature. A clear view on the current awareness, actual usage and opinions from the clinicians is needed to identify barriers and opportunities for the future of in silico medicine. The aim of this study was capturing the state of CM&S in clinics by means of a survey toward the clinical community. Responses were collected online using the Virtual Physiological Human institute communication channels, engagement with clinical societies, hospitals and individual contacts, between 2020 and 2021. Statistical analyses were done with R. Participants (n = 163) responded from all over the world. Clinicians were mostly aged between 35 and 64 years-old, with heterogeneous levels of experience and areas of expertise (i.e., 48% cardiology, 13% musculoskeletal, 8% general surgery, 5% paediatrics). The CM&S terms "Personalised medicine" and "Patient-specific modelling" were the most well-known within the respondents. "In silico clinical trials" and "Digital Twin" were the least known. The familiarity with different methods depended on the medical specialty. CM&S was used in clinics mostly to plan interventions. To date, the usage frequency is still scarce. A well-recognized benefit associated to CM&S is the increased trust in planning procedures. Overall, the recorded level of trust for CM&S is high and not proportional to awareness level. The main barriers appear to be access to computing resources, perception that CM&S is slow. Importantly, clinicians see a role for CM&S expertise in their team in the future. This survey offers a snapshot of the current situation of CM&S in clinics. Although the sample size and representativity could be increased, the results provide the community with actionable data to build a responsible strategy for accelerating a positive uptake of in silico medicine. New iterations and follow-up activities will track the evolution of responses over time and contribute to strengthen the engagement with the medical community.

4.
PLoS Comput Biol ; 19(4): e1011055, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37093855

RESUMO

Computational fluid dynamics (CFD) can be used to simulate vascular haemodynamics and analyse potential treatment options. CFD has shown to be beneficial in improving patient outcomes. However, the implementation of CFD for routine clinical use is yet to be realised. Barriers for CFD include high computational resources, specialist experience needed for designing simulation set-ups, and long processing times. The aim of this study was to explore the use of machine learning (ML) to replicate conventional aortic CFD with automatic and fast regression models. Data used to train/test the model consisted of 3,000 CFD simulations performed on synthetically generated 3D aortic shapes. These subjects were generated from a statistical shape model (SSM) built on real patient-specific aortas (N = 67). Inference performed on 200 test shapes resulted in average errors of 6.01% ±3.12 SD and 3.99% ±0.93 SD for pressure and velocity, respectively. Our ML-based models performed CFD in ∼0.075 seconds (4,000x faster than the solver). This proof-of-concept study shows that results from conventional vascular CFD can be reproduced using ML at a much faster rate, in an automatic process, and with reasonable accuracy.


Assuntos
Hemodinâmica , Modelos Cardiovasculares , Humanos , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Redes Neurais de Computação , Hidrodinâmica
5.
Artigo em Inglês | MEDLINE | ID: mdl-36503703

RESUMO

Virtual reality has been incorporated into clinical practice for planning complex congenital cardiac operations at the Great Ormond Street Hospital for Children since 2018 [1]. Virtual reality allows for 3-dimensional exploration of patient-specific models, created through the segmentation of 3-dimensional imaging data sets. Along with 3-dimensional printed models and 3-dimensional PDFs, this technology has enabled a new approach in planning and reviewing surgical interventions. It is particularly important in intracardiac repairs involving ventricular septal defects [2] and double outlet right ventricle cases presenting with various phenotypes of interventricular communication [3,4]. We present the virtual reality environment of two complex cases of double outlet right ventricle, illustrating the potential of virtual reality as a clinical tool to aid anatomical understanding and surgical planning of complex congenital heart disease.


Assuntos
Dupla Via de Saída do Ventrículo Direito , Comunicação Interventricular , Humanos , Dupla Via de Saída do Ventrículo Direito/cirurgia , Comunicação Interventricular/cirurgia , Imageamento Tridimensional
6.
J Cardiovasc Magn Reson ; 24(1): 57, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36336682

RESUMO

BACKGROUND: Computational fluid dynamics (CFD) is increasingly used for the assessment of blood flow conditions in patients with congenital heart disease (CHD). This requires patient-specific anatomy, typically obtained from segmented 3D cardiovascular magnetic resonance (CMR) images. However, segmentation is time-consuming and requires expert input. This study aims to develop and validate a machine learning (ML) method for segmentation of the aorta and pulmonary arteries for CFD studies. METHODS: 90 CHD patients were retrospectively selected for this study. 3D CMR images were manually segmented to obtain ground-truth (GT) background, aorta and pulmonary artery labels. These were used to train and optimize a U-Net model, using a 70-10-10 train-validation-test split. Segmentation performance was primarily evaluated using Dice score. CFD simulations were set up from GT and ML segmentations using a semi-automatic meshing and simulation pipeline. Mean pressure and velocity fields across 99 planes along the vessel centrelines were extracted, and a mean average percentage error (MAPE) was calculated for each vessel pair (ML vs GT). A second observer (SO) segmented the test dataset for assessment of inter-observer variability. Friedman tests were used to compare ML vs GT, SO vs GT and ML vs SO metrics, and pressure/velocity field errors. RESULTS: The network's Dice score (ML vs GT) was 0.945 (interquartile range: 0.929-0.955) for the aorta and 0.885 (0.851-0.899) for the pulmonary arteries. Differences with the inter-observer Dice score (SO vs GT) and ML vs SO Dice scores were not statistically significant for either aorta or pulmonary arteries (p = 0.741, p = 0.061). The ML vs GT MAPEs for pressure and velocity in the aorta were 10.1% (8.5-15.7%) and 4.1% (3.1-6.9%), respectively, and for the pulmonary arteries 14.6% (11.5-23.2%) and 6.3% (4.3-7.9%), respectively. Inter-observer (SO vs GT) and ML vs SO pressure and velocity MAPEs were of a similar magnitude to ML vs GT (p > 0.2). CONCLUSIONS: ML can successfully segment the great vessels for CFD, with errors similar to inter-observer variability. This fast, automatic method reduces the time and effort needed for CFD analysis, making it more attractive for routine clinical use.


Assuntos
Hemodinâmica , Imageamento por Ressonância Magnética , Humanos , Estudos Retrospectivos , Valor Preditivo dos Testes , Aorta/diagnóstico por imagem
7.
Front Pediatr ; 10: 1055212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389366

RESUMO

Background: Haemodialysis is a life-saving treatment for children with kidney failure. The majority of children have haemodialysis through central venous lines (CVLs). The use of CVLs in pediatric patients is often associated to complications which can lead to their replacement. The aim of this study is to investigate haemodynamics of pediatric CVLs to highlight the criticalities of different line designs. Methods: Four models of CVLs for pediatric use were included in this study. The selected devices varied in terms of design and sizes (from 6.5 Fr to 14 Fr). Accurate 3D models of CVLs were reconstructed from high-resolution images including venous and arterial lumens, tips and side holes. Computational fluid dynamics (CFD) analyses were carried out to simulate pediatric working conditions of CVLs in ideal and anatomically relevant conditions. Results: The arterial lumens of all tested CVLs showed the most critical conditions with the majority of blood flowing through the side-holes. A zone of low flow was identified at the lines' tip. The highest shear stresses distribution (>10 Pa) was found in the 8 Fr line while the highest platelet lysis index in the 10 Fr model. The analysis on the anatomical geometry showed an increase in wall shear stress measured in the 10 F model compared to the idealised configuration. Similarly, in anatomical models an increased disturbance and velocity of the flow was found inside the vein after line placement. Conclusion: This study provided a numerical characterization of fluid dynamics in pediatric CVLs highlighting performance criticalities (i.e. high shear stresses and areas of stagnation) associated to specific sizes (8 Fr and 10 Fr) and conditions (i.e. anatomical test).

8.
Curr Probl Cardiol ; 47(12): 101394, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36100095

RESUMO

In the same way that the practice of cardiology has evolved over the years, so too has the way cardiology fellows in training (FITs) are trained. Propelled by recent advances in technology-catalyzed by COVID-19-and the requirement to adapt age-old methods of both teaching and health care delivery, many aspects, or 'domains', of learning have changed. These include the environments in which FITs work (outpatient clinics, 'on-call' inpatient service) and procedures in which they need clinical competency. Further advances in virtual reality are also changing the way FITs learn and interact. The proliferation of technology into the cardiology curriculum has led to some describing the need for FITs to develop into 'digital cardiologists', namely those who comfortably use digital tools to aid clinical practice, teaching, and training whilst, at the same time, retain the ability for human analysis and nuanced assessment so important to patient-centred training and clinical care.


Assuntos
COVID-19 , Cardiologistas , Cardiologia , Humanos , COVID-19/epidemiologia , Cardiologia/educação , Currículo , Tecnologia
10.
Materials (Basel) ; 15(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35744343

RESUMO

Mitral regurgitation is a common valvular disorder. Transcatheter edge-to-edge repair (TEER) is a minimally invasive technique which involves holding together the middle segments of the mitral valve leaflets, thereby reducing regurgitation. To date, MitraClip™ is the only Food and Drug Administration (FDA)-approved device for TEER. The MitraClip procedure is technically challenging, characterised by a steep learning curve. Training is generally performed on simplified models, which do not emphasise anatomical features, realistic materials, or procedural scenarios. The aim of this study is to propose a novel, 3D printed simulator, with a major focus on reproducing the anatomy and plasticity of all areas of the heart involved and specifically the ones of the mitral valve apparatus. A three-dimensional digital model of a heart was generated by segmenting computed tomography (CT). The model was subsequently modified for: (i) adding anatomical features not fully visible with CT; (ii) adapting the model to interact with the MitraClip procedural equipment; and (iii) ensuring modularity of the system. The model was manufactured with a Polyjet technology printer, with a differentiated material assignment among its portions. Polypropylene threads were stitched to replicate chordae tendineae. The proposed system was successfully tested with MitraClip equipment. The simulator was assessed to be feasible to practice in a realistic fashion, different procedural aspects including access, navigation, catheter steering, and leaflets grasping. In addition, the model was found to be compatible with clinical procedural imaging fluoroscopy equipment. Future studies will assess the effect of the proposed training system on improving TEER training.

11.
Eur Heart J Cardiovasc Imaging ; 23(2): 275-282, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-33550364

RESUMO

AIMS: The aortic valve (AV) neocuspidization (Ozaki procedure) is a novel surgical technique for AV disease that preserves the natural motion and cardiodynamics of the aortic root. In this study, we sought to evaluate, by 4D-flow magnetic resonance imaging, the aortic blood flow characteristics after AV neocuspidization in paediatric patients. METHODS AND RESULTS: Aortic root and ascending aorta haemodynamics were evaluated in a population of patients treated with the Ozaki procedure; results were compared with those of a group of patients operated with the Ross technique. Cardiovascular magnetic resonance studies were performed at 1.5 T using a 4D flow-sensitive sequence acquired with retrospective electrocardiogram-gating and respiratory navigator. Post-processing of 4D-flow analysis was performed to calculate flow eccentricity and wall shear stress. Twenty children were included in this study, 10 after Ozaki and 10 after Ross procedure. Median age at surgery was 10.7 years (range 3.9-16.5 years). No significant differences were observed in wall shear stress values measured at the level of the proximal ascending aorta between the two groups. The analysis of flow patterns showed no clear association between eccentric flow and the procedure performed. The Ozaki group showed just a slightly increased transvalvular maximum velocity. CONCLUSION: Proximal aorta flow dynamics of children treated with the Ozaki and the Ross procedure are comparable. Similarly to the Ross, Ozaki technique restores a physiological laminar flow pattern in the short-term follow-up, with the advantage of not inducing a bivalvular disease, although further studies are warranted to evaluate its long-term results.


Assuntos
Valva Aórtica , Hemodinâmica , Adolescente , Aorta/cirurgia , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Velocidade do Fluxo Sanguíneo/fisiologia , Criança , Pré-Escolar , Hemodinâmica/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos
12.
Front Cardiovasc Med ; 8: 703717, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660711

RESUMO

The hemodynamic environment of the pulmonary bifurcation is of great importance for adult patients with repaired tetralogy of Fallot (rTOF) due to possible complications in the pulmonary valve and narrowing of the left pulmonary artery (LPA). The aim of this study was to computationally investigate the effect of geometrical variability and flow split on blood flow characteristics in the pulmonary trunk of patient-specific models. Data from a cohort of seven patients was used retrospectively and the pulmonary hemodynamics was investigated using averaged and MRI-derived patient-specific boundary conditions on the individualized models, as well as a statistical mean geometry. Geometrical analysis showed that curvature and tortuosity are higher in the LPA branch, compared to the right pulmonary artery (RPA), resulting in complex flow patterns in the LPA. The computational analysis also demonstrated high time-averaged wall shear stress (TAWSS) at the outer wall of the LPA and the wall of the RPA proximal to the junction. Similar TAWSS patterns were observed for averaged boundary conditions, except for a significantly modified flow split assigned at the outlets. Overall, this study enhances our understanding about the flow development in the pulmonary bifurcation of rTOF patients and associates some morphological characteristics with hemodynamic parameters, highlighting the importance of patient-specificity in the models. To confirm these findings, further studies are required with a bigger cohort of patients.

13.
Ann Biomed Eng ; 49(12): 3494-3507, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34431017

RESUMO

Computational Fluid Dynamics (CFD) simulations of blood flow are widely used to compute a variety of hemodynamic indicators such as velocity, time-varying wall shear stress, pressure drop, and energy losses. One of the major advances of this approach is that it is non-invasive. The accuracy of the cardiovascular simulations depends directly on the level of certainty on input parameters due to the modelling assumptions or computational settings. Physiologically suitable boundary conditions at the inlet and outlet of the computational domain are needed to perform a patient-specific CFD analysis. These conditions are often affected by uncertainties, whose impact can be quantified through a stochastic approach. A methodology based on a full propagation of the uncertainty from clinical data to model results is proposed here. It was possible to estimate the confidence associated with model predictions, differently than by deterministic simulations. We evaluated the effect of using three-element Windkessel models as the outflow boundary conditions of a patient-specific aortic coarctation model. A parameter was introduced to calibrate the resistances of the Windkessel model at the outlets. The generalized Polynomial Chaos method was adopted to perform the stochastic analysis, starting from a few deterministic simulations. Our results show that the uncertainty of the input parameter gave a remarkable variability on the volume flow rate waveform at the systolic peak simulating the conditions before the treatment. The same uncertain parameter had a slighter effect on other quantities of interest, such as the pressure gradient. Furthermore, the results highlight that the fine-tuning of Windkessel resistances is not necessary to simulate the post-stenting scenario.


Assuntos
Coartação Aórtica/fisiopatologia , Hemodinâmica , Hidrodinâmica , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Coartação Aórtica/cirurgia , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Simulação por Computador , Humanos , Stents , Processos Estocásticos , Estresse Mecânico
14.
Sports (Basel) ; 9(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071632

RESUMO

On rings, in men's artistic gymnastics, the general strength requirements for important static elements remain elusive. Therefore, the aim was to describe the relationship between a new conditioning strength test and a maximum strength test of static elements on rings in order to determine the minimal strength level (benchmarks) required to maintain these elements with one's own body weight. Nineteen elite gymnasts performed a concentric (1RM isoinertial) and eccentric (isokinetic: 0.1 m/s) conditioning strength test for swallow/support scale (supine position) and inverted cross (seated position) on a computer-controlled device and a maximum strength test maintaining these elements for 5 s on rings with counterweight or additional weight. High correlation coefficients were found between the conditioning maximum strength for swallow/support scale (r: 0.65 to 0.92; p < 0.05) and inverted cross (r: 0.62 to 0.69; p > 0.05) and the maximum strength of the elements on rings. Strength benchmarks varied between 56.66% (inverted cross concentric) and 94.10% (swallow eccentric) of body weight. Differences in biomechanical characteristics and technical requirements of strength elements on rings may (inter alia) explain the differences between correlations. Benchmarks of conditioning strength may help coaches and athletes systematize the training of strength elements on rings.

15.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33619175

RESUMO

Although wine was unquestionably one of the most important commodities traded in the Mediterranean during the Roman Empire, less is known about wine commerce after its fall and whether the trade continued in regions under Islamic control. To investigate, here we undertook systematic analysis of grapevine products in archaeological ceramics, encompassing the chemical analysis of 109 transport amphorae from the fifth to the eleventh centuries, as well as numerous control samples. By quantifying tartaric acid in relation to malic acid, we were able to distinguish grapevines from other fruit-based products with a high degree of confidence. Using these quantitative criteria, we show beyond doubt that wine continued to be traded through Sicily during the Islamic period. Wine was supplied locally within Sicily but also exported from Palermo to ports under Christian control. Such direct evidence supports the notion that Sicilian merchants continued to capitalize on profitable Mediterranean trade networks during the Islamic period, including the trade in products prohibited by the Islamic hadiths, and that the relationship between wine and the rise of Islam was far from straightforward.

16.
Eur Heart J Digit Health ; 2(4): 667-675, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36713107

RESUMO

Aims: We aim to determine any additional benefit of virtual reality (VR) experience if compared to conventional cross-sectional imaging and standard three-dimensional (3D) modelling when deciding on surgical strategy in patients with complex double outlet right ventricle (DORV). Methods and results: We retrospectively selected 10 consecutive patients with DORV and complex interventricular communications, who underwent biventricular repair. An arterial switch operation (ASO) was part of the repair in three of those. Computed tomography (CT) or cardiac magnetic resonance imaging images were used to reconstruct patient-specific 3D anatomies, which were then presented using different visualization modalities: 3D pdf, 3D printed models, and VR models. Two experienced paediatric cardiac surgeons, blinded to repair performed, reviewed each case evaluating the suitability of repair following assessment of each visualization modalities. In addition, they had to identify those who had ASO as part of the procedure. Answers of the two surgeons were compared to the actual operations performed. There was no mortality during the follow-up (mean = 2.5 years). Two patients required reoperations. After review of CT/cardiac magnetic resonance images, the evaluators identified the surgical strategy in accordance with the actual surgical plan in 75% of the cases. When using 3D pdf this reached only 70%. Accordance improved to 85% after revision of 3D printed models and to 95% after VR. Use of 3D printed models and VR facilitated the identification of patients who required ASO. Conclusion: Virtual reality can enhance understanding of suitability for biventricular repair in patients with complex DORV if compared to cross-sectional images and other 3D modelling techniques.

17.
Sci Rep ; 10(1): 9906, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555300

RESUMO

Transcatheter aortic valve implantation (TAVI) still presents complications: paravalvular leakage (PVL) and onset of conduction abnormalities leading to permanent pacemaker implantation. Our aim was testing a validated patient-specific computational framework for prediction of TAVI outcomes and possible complications. Twenty-eight TAVI patients (14 SapienXT and 14 CoreValve) were retrospectively selected. Pre-procedural CT images were post-processed to create 3D patient-specific implantation sites. The procedures were simulated with finite element analysis. Simulations' results were compared against post-procedural clinical fluoroscopy and echocardiography images. The computational model was in good agreement with clinical findings: the overall stent diameter difference was 2.6% and PVL was correctly identified with a post-processing algorithm in 83% of cases. Strains in the implantation site were studied to assess the risk of conduction system disturbance and were found highest in the patient who required pacemaker implantation. This study suggests that computational tool could support safe planning and broadening of TAVI.


Assuntos
Estenose da Valva Aórtica/cirurgia , Simulação por Computador , Substituição da Valva Aórtica Transcateter/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Valva Aórtica/diagnóstico por imagem , Valvuloplastia com Balão , Ecocardiografia , Feminino , Análise de Elementos Finitos , Humanos , Masculino , Complicações Pós-Operatórias , Desenho de Prótese , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Resultado do Tratamento
18.
Med Eng Phys ; 74: 153-161, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31653498

RESUMO

The mechanics of the mitral valve (MV) are the result of the interaction of different anatomical structures complexly arranged within the left heart (LH), with the blood flow. MV structure abnormalities might cause valve regurgitation which in turn can lead to heart failure. Patient-specific computational models of the MV could provide a personalised understanding of MV mechanics, dysfunctions and possible interventions. In this study, we propose a semi-automatic pipeline for MV modelling based on the integration of state-of-the-art medical imaging, i.e. cardiac magnetic resonance (CMR) and 3D transoesophageal-echocardiogram (TOE) with fluid-structure interaction (FSI) simulations. An FSI model of a patient with MV regurgitation was implemented using the finite element (FE) method and smoothed particle hydrodynamics (SPH). Our study showed the feasibility of combining image information and computer simulations to reproduce patient-specific MV mechanics as seen on medical images, and the potential for efficient in-silico studies of MV disease, personalised treatments and device design.


Assuntos
Hemodinâmica , Insuficiência da Valva Mitral/fisiopatologia , Valva Mitral/fisiopatologia , Modelagem Computacional Específica para o Paciente , Fluxo de Trabalho , Eletrocardiografia , Análise de Elementos Finitos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/diagnóstico por imagem
19.
Int J Artif Organs ; 42(10): 539-547, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31269860

RESUMO

The development of accurate replicas of the circulatory and cardiac system is fundamental for a deeper understanding of cardiovascular diseases and the testing of new devices. Although numerous works concerning mock circulatory loops are present in the current state of the art, still some limitations are present. In particular, a pumping system able to reproduce the left ventricle motion and completely compatible with the magnetic resonance environment to permit the four-dimensional flow monitoring is still missing. The aim of this work was to evaluate the feasibility of an actuator suitable for cardiovascular mock circuits. Particular attention was given to the ability to mimic the left ventricle dynamics including both compression and twisting with the magnetic resonance compatibility. In our study, a left ventricle model to be actuated through vacuum was designed. The realization of the system was evaluated with finite element analysis of different design solutions. After the in silico evaluation phase, the most suitable design in terms of physiological values reproduction was fabricated through three-dimensional printing for in vitro validation. A pneumatic experimental setup was developed to evaluate the pump performances in terms of actuation, in particular ventricle radial and longitudinal displacement, twist rotation, and ejection fraction. The study demonstrated the feasibility of a custom pneumatic pump for mock circulatory loops able to reproduce the physiological ventricle movement and completely suitable for the magnetic resonance environment.


Assuntos
Coração Auxiliar , Modelos Cardiovasculares , Impressão Tridimensional , Função Ventricular Esquerda , Biomimética , Simulação por Computador , Análise de Elementos Finitos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...